Just like the Universe, our brains might be programmed to maximise disorder – similar to the principle of entropy – and our consciousness could simply be a side effect.

The hypothesis was first put forward in 2014 by cosmologist and theoretical physicist Max Tegmark from MIT, who proposed that there’s a state of matter – just like a solid, liquid, or gas – in which atoms are arranged to process information and give rise to subjectivity, and ultimately, consciousness.
The quest to understand human consciousness – our ability to be aware of ourselves and our surroundings – has been going on for centuries. Although consciousness is a crucial part of being human, researchers still don’t truly understand where it comes from, and why we have it.

But a new study, led by researchers from France and Canada, puts forward a new possibility: what if consciousness arises naturally as a result of our brains maximising their information content? In other words, what if consciousness is a side effect of our brain moving towards a state of entropy?

Entropy is basically the term used to describe the progression of a system from order to disorder. Picture an egg: when it’s all perfectly separated into yolk and white, it has low entropy, but when you scramble it, it has high entropy – it’s the most disordered it can be.

This is what many physicists believe is happening to our Universe. After the Big Bang, the Universe has gradually been moving from a state of low entropy to high entropy, and because the second law of thermodynamics states that entropy can only increase in a system, it could explain why the arrow of time only ever moves forwards.

 

This lead the researchers to argue that consciousness could simply be an “emergent property” of a system that’s trying to maximise information exchange.

Before we get too carried away, there are some big limitations to this work – primarily the small sample size. It’s hard to spot any conclusive trends from only nine people, particularly as everyone’s brains responded slightly differently to the various states.

 

The paper has been accepted for publication in Physical Review E, but is available online now at arXiv.org.